Journal of Organometallic Chemistry, 420 (1991) 87–94 Elsevier Sequoia S.A., Lausanne JOM 22096

Cluster chemistry

LXXI *. Isomerisation of a pentanuclear ruthenium cluster by elimination of phenylphosphinidene from a tertiary phosphine. X-Ray structure of $\operatorname{Ru}_5(\mu_5-C_2\operatorname{Ph})(\mu_4-\operatorname{PPh})(\mu-\operatorname{PPh}_2)(\operatorname{CO})_{13}$

Chris J. Adams, Michael I. Bruce

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)

Brian W. Skelton and Allan H. White

Department of Chemistry, University of Western Australia, Nedlands, Western Australia 6009 (Australia) (Received June 7th, 1991)

Abstract

Reactions of $\operatorname{Ru}_{5}(\mu_{5}-C_{2}\operatorname{PPh}_{2})(\mu-\operatorname{PPh}_{2})(\operatorname{CO})_{13}$ (1) in oxirane gave an isomer of 1, $\operatorname{Ru}_{5}(\mu_{5}-C_{2}\operatorname{Ph})(\mu_{4}-\operatorname{PPh})(\mu-\operatorname{PPh}_{2})(\operatorname{CO})_{13}$, which has been formed by formal elimination of PPh from the $C_{2}\operatorname{PPh}_{2}$ ligand in 1 to the cluster, with concomitant cleavage of an Ru-Ru bond. The rhomboidal Ru₄ core interacts with a $C_{2}\operatorname{Ph}$ ligand to give a trigonal prismatic $C_{2}\operatorname{Ru}_{4}$ arrangement, of which a triangular face is capped by the fifth Ru atom and a square face by the PPh group; the Ru₅ skeleton has an envelope conformation. Notable is the short bond (1.965(6) Å) from the acetylide C_{α} to the edgebridging Ru atom, indicating some carbenic character for this carbon.

Introduction

In the reactions of PAr₃ (Ar = Ph, tol) with $\operatorname{Ru}_{5}(\mu_{5}-C_{2}PPh_{2})(\mu-PPh_{2})(CO)_{13}$ (1) we found facile cleavage of P-C(*sp*²) bonds occurred in both the coordinated PAr₃ and C₂PPh₂ ligands to give $\operatorname{Ru}_{5}(\mu_{4}-PPh)(\mu_{3}-PhC_{2}Ar)(\mu-PPh_{2})(\mu-PAr_{2})(CO)_{10}$ (2; Ar = Ph, tol) (Scheme 1) [2]. Elimination of PPh occurred and migration of Ar from P to the ethynyl group afforded a cluster-bound alkyne. The net reaction on the cluster was:

 $PAr_3 + C_2PPh_2 \rightarrow ArC_2Ph + PAr_2 + PPh$

Similar migration of phenyl groups occurred during the thermolysis of $Ru_5(\mu_4-C_2Ph)(\mu-PPh_2)(CO)_{14}$ to give $Ru_5(\mu_4-PPh)(\mu_3-PhC_2Ph)(CO)_{13}$ [3] and in a less

^{*} For Part LXX, see ref. 1.

Scheme 1

well-defined way during the pyrolysis of $\{Ru_3(CO)_{11}\}_2(\mu$ -dppa) (dppa = $C_2(PPh_2)_2$), the products of which included the μ_4 -alkyne complex $Ru_4(\mu_4$ -PPh)(μ_4 -PhC₂PPh₂)(μ -CO)₂(CO)₈ (3) [4,5] and the μ_4 -vinylidene complex $Ru_5(\mu_4$ -PPh){ μ_3 -CCPh(PPh₂)}(CO)₁₂ (4) [5] in addition to 1 as the major product [4]. This paper describes an isomer of 1 which is formed by elimination of PPh from the C_2PPh_2 ligand.

Results and discussion

A reaction between 1 and oxirane (ethylene oxide) was carried out in benzene $(100 \,^\circ C/24 \,^h)$. The major product was obtained in only 15% yield as black crystals which were characterised by X-ray crystallography as an isomer of 1 of composition $\operatorname{Ru}_5(\mu_5-C_2\operatorname{Ph})(\mu_4-\operatorname{PPh})(\mu-\operatorname{PPh}_2)(\operatorname{CO})_{13}$ (5). A plot of the molecule is shown in Fig. 1, while Table 1 lists significant bond parameters.

The metal core consists of a rhombus of four Ru atoms, one edge of which is bridged by the fifth ruthenium to give an envelope-shaped cluster, similar to a 'step-site' on a metal surface. One side of the rhombus is capped by a μ_4 -PPh group, the opposite side by a phenylethynyl ligand. C_a interacts strongly with Ru(1), resulting in an internal dihedral of 108.40° between the Ru(1)-Ru(2)-Ru(5) and Ru(2)-Ru(3)-Ru(4)-Ru(5) planes. A PPh₂ group bridges an Ru-Ru edge adjacent to the flap. Coordination of the metal atoms is completed by 13 CO ligands, distributed two each to Ru(4) and Ru(5), and three each to the three remaining Ru atoms. There is a semi-bridging interaction between CO(52) and Ru(1) [Ru(1)-C(52) 2.596(8) Å; Ru(5)-C(52)-O(52) 163.4(6)°], with a lesser displacement of CO(23) towards the same metal atom.

Fig. 1. Computer-generated plots of a molecule of $Ru_5(\mu_5-C_2Ph)(\mu_4-PPh_2)(CO)_{13}$ (5), (a) perpendicular to the Ru(5)-Ru(2)-Ru(3)-Ru(4) plane and (b) from the side of the Ru_4 rhombus, showing atom numbering scheme. Non-hydrogen atoms are shown as 20% thermal ellipsoids; hydrogen atoms have arbitrary radii of 0.1 Å.

Fig. 1 (continued).

Within the core, Ru-Ru distances range from 2.829-2.913(1) Å, of which the shortest is Ru(2)-Ru(5), the hinge of the flap, and the longest Ru(2)-Ru(3). The PPh₂-bridged Ru(4)-Ru(5) vector is 2.877(1) Å; Ru(1) asymmetrically bridges Ru(2)-Ru(5), being closer to Ru(5) by 0.034 Å.

The Ru₄ rhombus is asymmetrically capped by the PPh group, one bond, Ru(5)-P(1) [2.429(2) Å] being markedly longer than the other three [2.356-2.389(1) Å], as found in Ru₅(μ_4 -PPh)(CO)₁₅ [6]. The PPh₂ group bridges Ru(4)-Ru(5) almost symmetrically.

The phenylethynyl fragment is attached to all five metal atoms. The strongest interaction is of C_{α} with Ru(1) [1.965(6) Å], which is short enough to indicate a significant degree of multiple bond character. This carbon is less firmly attached to Ru(2) and Ru(5) [2.333, 2.222(6) Å, respectively]. The separation of C_{β} from Ru(3) and Ru(4) is normal [2.182, 2.188(8) Å]. The C(1)-C(2) bond length is 1.395(8) Å.

Ru(1)-Ru(2)	2.875(1)	Ru(5)-P(2)	2.299(2)
Ru(1)-Ru(5)	2.8406(9)		
Ru(2)-Ru(3)	2.913(1)	Ru(1)-C(2)	1.965(6)
Ru(2)-Ru(5)	2.829(1)	Ru(2)-C(2)	2.333(6)
Ru(3)-Ru(4)	2.847(1)	Ru(3)-C(1)	2.182(8)
Ru(4)-Ru(5)	2.877(1)	Ru(4)-C(1)	2.188(6)
		Ru(5)-C(2)	2.222(6)
Ru(2)-P(1)	2.389(1)		
Ru(3)-P(1)	2.356(2)	Ru(1)-C(52)	2.596(8)
Ru(4)-P(1)	2.370(1)	Ru(5)–C(52)	1.897(8)
Ru(4)-P(2)	2.281(2)		
Ru(5)-P(1)	2.429(2)	C(1)-C(2)	1.395(8)
Ru(2)-Ru(1)-Ru(5)	59.33(2)	Ru(4) - P(1) - Ru(5)	73.64(2)
Ru(2)-Ru(3)-Ru(4)	89.69(2)	Ru(2)-C(2)-Ru(5)	76.7(1)
Ru(3)-Ru(4)-Ru(5)	89.93(2)	Ru(3)-C(1)-Ru(4)	81.3(2)
Ru(4)-Ru(5)-Ru(2)	90.78(2)	Ru(1)-C(2)-C(1)	150.4(4)
Ru(5)-Ru(2)-Ru(3)	89.55(2)	Ru(2)-C(23)-O(23)	171.4(8)
Ru(1)-Ru(5)-Ru(2)	60.95(2)	Ru(1)-C(52)-O(52)	120.0(4)
Ru(1)-Ru(2)-Ru(5)	59.72(2)	Ru(5)-C(52)-O(52)	163.4(6)
		C(2)-C(1)-C(Ph)	122.1(6)

range 1.875-1.981(8), av. 1.912 Å range 1.11-1.15(1), av. 1.135 Å

range 1.811-1.834(7), av. 1.822 Å range 171.4-178.4(8), av. 175.4°.

Table 1

Ru-CO

Ru-C-O

C-0 P-C(Ph)

The geometry of the core of 5 can be described as a trigonal prism (C_2Ru_4) capped on a triangular face by Ru(1) and on a square face by PPh. As described above, the ligands contribute a total of 50 electrons to the cluster, which is thus electron-precise, although formally Ru(5) is electron-rich and Ru(1) is electron-poor, the latter situation is partially compensated by the semi-bridging interactions with CO(23) and CO(52). Alternatively, the cluster is a 78 valence electron system, as expected for this open five-atom geometry.

The spectroscopic properties of 5 are consistent with the solid state structure. The IR $\nu(CO)$ spectrum contains only bands for terminal CO groups, while in the ¹³C NMR spectrum, the C_a and C_b resonances are either in the CO region (δ 190–210) or in the phenyl region; a singlet at δ 147.6 may be due to one of these. The ¹H NMR spectrum contains only resonances for the phenyl protons. The FAB mass spectrum contains a molecular ion at m/z 1264, which fragments by loss of up to 13 CO ligands.

The bonding of the phenylethynyl group deserves further comment. The short Ru(1)-C(2) interaction is reminiscent of the interaction of the alkyne with the Os₃ cluster in $Os_3(\mu-H)_2(\mu_3-HC_2NEt_2)(CO)_9$ [7], i.e. a carbenic interaction, which has been thoroughly examined by an Extended Hückel MO study [8]. In this complex, the C_2Os_3 unit has a basket-like geometry with the carbon bearing the NEt₂ group being attached to only one Os atom. The C-N bond has a bond order intermediate between a C-N single and a C=N double bond, and indeed, the system has been described as a dimetallamethyl(diethylamino)carbene (A). In the present case we reverse the geometry, as in **B**, and propose a three-centre C(2)-Ru(2)-Ru(5) interaction. It is notable that the C(1)-C(2) bond is lengthened to about 1.4 Å in accord with the proposed description, and also that each ruthenium atom now achieves an 18-electron configuration.

The isomerisation of 1 has proceeded, at least formally, by a simple extrusion of PPh from the C_2PPh_2 group to the cluster, with concomitant rupture of one of the 'internal' Ru-Ru bonds to form the cluster found in 5 (eq. 1).

$$C_2PPh_2 \rightarrow C_2Ph + PPh$$

(1)

Two possible routes for this cluster-mediated isomerisation are (i) by C(sp)-P bond cleavage to give (C₂ + PPh₂), followed by Ph migration from PPh₂ to a carbon atom of the C₂ fragment, or (ii) by elimination of PPh directly from the PPh₂ group to the cluster. Studies of related reactions of 1, to be described elsewhere, suggest that the former is more likely.

Experimental

General experimental details [2] and the method of synthesis of 1 [5] are similar to those described previously.

Reaction of $Ru_5(\mu_5-C_2PPh_2)(\mu-PPh_2)(CO)_{13}$ with oxirane

A mixture of Ru₅(μ_5 -C₂PPh₂)(μ -PPh₂)(CO)₁₃ (100 mg, 0.079 mmol) and oxirane (1.1 g, 25 mmol) in benzene (15 cm³) was heated in a Carius tube at 100 °C for 24 h. The solvent was removed and the residue purified by preparative TLC (petroleum ether/acetone 10/3) to yield at least six bands. A major brown band (R_1 0.7) was crystallised (CH₂Cl₂/MeOH) to yield black crystals of Ru₅(μ_5 -C₂Ph)(μ -PPh₂)(μ_4 -PPh)(CO)₁₃ (5) (15 mg, 15%), m.p. > 300 °C (dec.). Found: C, 36.81; H, 1.65%; *M* (mass spectrometry), 1264. C₃₉H₂₀O₁₃P₂Ru₅ calc. C, 37.06; H, 1.59%; *M* 1264. IR: ν (CO) (cyclohexane) 2084s, 2061vs, 2040s, 2029vs, 2019s, 2005m, 1991m, 1982m, 1976m, 1924w cm⁻¹. ¹H NMR: δ (CDCl₃) 7.26-8.00 (m, 20H, Ph). ¹³C NMR: δ (CDCl₃) 190.6, 191.8, 194.0, 195.3, 199.0, 199.9, 202.1, 202.6, 208.0, 209.8, 210.1 (11 × s, CO); 147.6, 141.6, 139.3 (3 × s); 125.2-136.5 (m, Ph). FAB MS: 1264, [*M*]⁺; 1236-900, [*M* - *n*CO]⁺ (*n* = 1-13). The remaining bands were obtained in trace amounts and have not been identified.

Crystallography

A unique data set was measured at ca 295 K within the limit $2\theta_{max} = 50^{\circ}$ using an Enraf-Nonius CAD4 diffractometer $(2\theta/\theta \text{ scan mode}; \text{ monochromatic Mo-}K_{\alpha}$ radiation, $\lambda = 0.7107_3$ Å); 6937 independent reflections were obtained, 5759 with

C(213)

C(214)

1.2980(7)

1.2373(7)

0.1495(3)

0.0957(3)

0.6833(5)

0.6749(5)

0.061(4)

0.065(4)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Atom	<i>x</i>	у	Z	$U_{\rm eq}$ (Å ²)
Ru(2) $0.6055(4)$ $0.3298(2)$ $0.60522(3)$ $0.0224(2)$ Ru(3) $0.78043(5)$ $0.31917(2)$ $0.79536(3)$ $0.0318(2)$ Ru(4) $0.99395(4)$ $0.27126(2)$ $0.79053(3)$ $0.0225(2)$ Ru(5) $0.82273(4)$ $0.28545(2)$ $0.60339(3)$ $0.0299(2)$ C(11) $0.5476(5)$ $0.4274(3)$ $0.3660(3)$ $0.084(3)$ Op11) $0.5476(5)$ $0.4274(3)$ $0.660(3)$ $0.084(3)$ C(12) $0.1751(7)$ $0.4430(3)$ $0.6014(4)$ $0.057(4)$ O(12) $0.5970(6)$ $0.2573(2)$ $0.5598(5)$ $0.059(4)$ O(13) $0.9710(6)$ $0.476(3)$ $0.5702(4)$ $0.098(4)$ C(21) $0.3766(5)$ $0.2670(2)$ $0.5990(3)$ $0.071(3)$ C(22) $0.5230(7)$ $0.4494(3)$ $0.6008(5)$ $0.061(4)$ O(22) $0.4530(6)$ $0.4445(2)$ $0.5968(5)$ $0.106(4)$ C(23) $0.5150(7)$ $0.3154(3)$ $0.803(4)$ $0.043(3)$ O(31) $0.6599(4)$ $0.2250(2)$ $0.806(3)$ $0.011(3)$ O(31) $0.6599(4)$ $0.2286(3)$ $0.5119(4)$ $0.047(3)$ O(33) $0.7352(7)$ $0.396(3)$ $0.8185(5)$ $0.056(4)$ O(33) $0.7352(7)$ $0.396(3)$ $0.8185(5)$ $0.056(4)$ O(31) $0.7928(4)$ $0.9837(3)$ $0.993(4)$ O(31) $0.7928(4)$ $0.9837(3)$ $0.993(4)$ O(32) $0.9981(5)$ $0.2849(2)$ $0.9837(3)$ $0.993(4)$ O(33) $0.735($	Ru(1)	0.75187(5)	0.40935(2)	0.56770(3)	0.0385(2)
Ru(3)0.78043(5)0.31917(2)0.79536(3)0.03125(2)Ru(4)0.99395(4)0.27126(2)0.79053(3)0.0325(2)Ru(5)0.82273(4)0.28545(2)0.60339(3)0.0299(2)C(11)0.6211(7)0.4215(3)0.4395(4)0.056(4)0911)0.5476(5)0.4274(3)0.360(3)0.084(3)C(12)0.7151(7)0.4830(3)0.6014(4)0.057(4)O(12)0.6996(6)0.5273(2)0.6220(4)0.091(4)C(13)0.9710(6)0.4491(3)0.5598(5)0.059(4)C(21)0.4634(6)0.2887(3)0.6012(4)0.044(3)C(21)0.4534(6)0.2887(3)0.6012(4)0.044(3)C(22)0.5230(7)0.4042(3)0.6008(5)0.016(4)C(23)0.4174(5)0.3050(3)0.4110(3)0.093(4)C(23)0.4474(5)0.3050(3)0.4110(3)0.093(4)C(31)0.6599(4)0.2280(2)0.8061(3)0.067(3)C(32)0.9202(6)0.2846(3)0.9119(4)0.047(3)C(33)0.755(6)0.4411(2)0.8305(4)0.093(4)C(41)1.0462(6)0.190(3)0.830(4)0.055(4)C(41)1.0447(6)0.133(3)0.9566(3)0.091(3)C(33)0.755(5)0.1682(2)0.501(4)0.043(3)C(33)0.755(5)0.1682(2)0.501(4)0.043(3)C(33)0.755(5)0.3153(3)0.956(3)0.091(3)C(41)1.047(6)0.3268(2)0.67	Ru(2)	0.60556(4)	0.32989(2)	0.60525(3)	0.0324(2)
Ru(4)0.93955(4)0.27126(2)0.79063(3)0.0239(2)Ru(5)0.82273(4)0.28545(2)0.60339(3)0.0299(2)C(11)0.6211(7)0.4215(3)0.4395(4)0.056(4)O'11)0.5476(5)0.4274(3)0.3660(3)0.084(3)C(12)0.7151(7)0.4430(3)0.6614(4)0.057(4)O(12)0.6996(6)0.5273(2)0.6220(4)0.091(4)C(13)0.8916(7)0.4491(3)0.5698(5)0.059(4)C(21)0.4634(6)0.2887(3)0.6012(4)0.044(3)O(21)0.3766(5)0.2670(2)0.5990(3)0.071(3)C(22)0.4530(6)0.4455(2)0.5968(5)0.106(4)C(23)0.5150(7)0.3154(3)0.4836(4)0.059(4)C(23)0.5150(7)0.3154(3)0.4836(4)0.059(4)C(31)0.6459(6)0.2761(3)0.8003(4)0.43(3)O(31)0.5699(4)0.2520(2)0.8061(3)0.067(3)C(32)0.981(5)0.2840(2)0.9837(3)0.071(3)C(32)0.9981(5)0.2840(2)0.9837(3)0.071(3)C(33)0.7352(7)0.3969(3)0.8185(5)0.056(4)C(33)0.7352(7)0.3969(3)0.8185(5)0.056(4)C(41)1.0462(6)0.1900(3)0.830(4)0.052(3)C(41)1.0462(6)0.1900(3)0.830(4)0.052(3)C(41)1.0462(6)0.1900(3)0.830(4)0.052(3)C(41)1.0462(6)0.1909(3)0.	Ru(3)	0.78043(5)	0.31917(2)	0.79536(3)	0.0318(2)
Ru(5) $0.82273(4)$ $0.28545(2)$ $0.60339(3)$ $0.029(2)$ C(11) $0.6211(7)$ $0.4215(3)$ $0.4395(4)$ $0.056(4)$ O(12) $0.577(5)$ $0.4274(3)$ $0.560(3)$ $0.084(3)$ C(12) $0.7151(7)$ $0.433(3)$ $0.6014(4)$ $0.057(4)$ O(12) $0.6996(6)$ $0.5273(2)$ $0.6220(4)$ $0.991(4)$ C(13) $0.9710(6)$ $0.4491(3)$ $0.5702(4)$ $0.984(4)$ C(21) $0.4634(6)$ $0.2887(3)$ $0.6012(4)$ $0.944(3)$ C(21) $0.4534(6)$ $0.2670(2)$ $0.599(3)$ $0.071(3)$ C(22) $0.5230(7)$ $0.4042(3)$ $0.6008(5)$ $0.06(4)$ C(23) $0.4474(5)$ $0.3050(3)$ $0.4110(3)$ $0.93(4)$ C(23) $0.4474(5)$ $0.3050(3)$ $0.4110(3)$ $0.93(4)$ C(31) $0.6699(4)$ $0.2520(2)$ $0.8061(3)$ $0.067(3)$ C(32) $0.9202(6)$ $0.2580(3)$ $0.9119(4)$ $0.477(3)$ C(32) $0.9202(6)$ $0.2580(2)$ $0.9837(3)$ $0.077(3)$ C(32) $0.9202(6)$ $0.258(3)$ $0.9119(4)$ $0.047(3)$ C(33) $0.7055(6)$ $0.4411(2)$ $0.830(4)$ $0.93(4)$ C(33) $0.7055(6)$ $0.4411(2)$ $0.830(4)$ $0.055(4)$ C(41) $1.0647(6)$ $0.1438(3)$ $0.8825(4)$ $0.98(4)$ C(42) $1.1611(6)$ $0.2987(3)$ $0.8932(4)$ $0.052(3)$ C(31) $0.7784(6)$ $0.299(3)$ $0.5443(4)$ $0.035(3)$ <td< td=""><td>Ru(4)</td><td>0.99395(4)</td><td>0.27126(2)</td><td>0.79063(3)</td><td>0.0325(2)</td></td<>	Ru(4)	0.99395(4)	0.27126(2)	0.79063(3)	0.0325(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ru(5)	0.82273(4)	0.28545(2)	0.60339(3)	0.0299(2)
O911) 0.5476(5) 0.4274(3) 0.3660(3) 0.084(3) C(12) 0.7151(7) 0.4830(3) 0.6014(4) 0.091(4) C(13) 0.8916(7) 0.4491(3) 0.5598(5) 0.059(4) C(13) 0.9710(6) 0.4769(3) 0.5702(4) 0.098(4) C(21) 0.4634(6) 0.2887(3) 0.6012(4) 0.044(3) O(21) 0.3766(5) 0.2670(2) 0.5990(3) 0.071(3) C(22) 0.5230(7) 0.4042(3) 0.6008(5) 0.106(4) C(23) 0.417(5) 0.3050(3) 0.4110(3) 0.093(4) C(23) 0.4474(5) 0.3050(3) 0.4110(3) 0.093(4) C(31) 0.6459(6) 0.276(1) 0.8003(4) 0.043(3) C(31) 0.5699(4) 0.2520(2) 0.8061(3) 0.067(3) C(32) 0.9202(6) 0.2846(2) 0.9837(3) 0.071(3) C(33) 0.7056(6) 0.4411(2) 0.8305(4) 0.055(4) C(41) 1.06476(6) 0.1438(3) 0.8622(4)<	C(11)	0.6211(7)	0.4215(3)	0.4395(4)	0.056(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O911)	0.5476(5)	0.4274(3)	0.3660(3)	0.084(3)
O(12) $0.6996(6)$ $0.5273(2)$ $0.6220(4)$ $0.091(4)$ $C(13)$ $0.8916(7)$ $0.4769(3)$ $0.5702(4)$ $0.098(4)$ $C(21)$ $0.4634(6)$ $0.2887(3)$ $0.6012(4)$ $0.098(4)$ $C(21)$ $0.3766(5)$ $0.2670(2)$ $0.5990(3)$ $0.071(3)$ $C(22)$ $0.5230(7)$ $0.4042(3)$ $0.6008(5)$ $0.061(4)$ $O(22)$ $0.4630(6)$ $0.4455(2)$ $0.5968(5)$ $0.106(4)$ $C(23)$ $0.5150(7)$ $0.3154(3)$ $0.4836(4)$ $0.059(4)$ $O(23)$ $0.4474(5)$ $0.3050(3)$ $0.4110(3)$ $0.093(4)$ $C(31)$ $0.6459(6)$ $0.276(3)$ $0.8003(4)$ $0.143(3)$ $O(31)$ $0.5699(4)$ $0.2520(2)$ $0.8061(3)$ $0.067(3)$ $C(32)$ $0.9202(6)$ $0.2986(3)$ $0.9119(4)$ $0.147(3)$ $O(32)$ $0.991(5)$ $0.2849(2)$ $0.9837(3)$ $0.071(3)$ $C(33)$ $0.7352(7)$ $0.3969(3)$ $0.8185(5)$ $0.056(4)$ $O(33)$ $0.7056(6)$ $0.4411(2)$ $0.8306(4)$ $0.938(4)$ $C(41)$ $1.0462(6)$ $0.1900(3)$ $0.8302(4)$ $0.093(4)$ $C(41)$ $1.0462(6)$ $0.1900(3)$ $0.8302(4)$ $0.095(3)$ $O(42)$ $1.2585(5)$ $0.3153(3)$ $0.566(3)$ $0.091(3)$ $C(42)$ $1.611(6)$ $0.2997(3)$ $0.8432(4)$ $0.98(4)$ $C(41)$ $1.0462(6)$ $0.3199(3)$ $0.581(4)$ $0.043(3)$ $O(52)$ $0.8120(6)$ $0.3153(3)$ $0.$	C(12)	0.7151(7)	0.4830(3)	0.6014(4)	0.057(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(12)	0.6996(6)	0.5273(2)	0.6220(4)	0.091(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(13)	0.8916(7)	0.4491(3)	0.5698(5)	0.059(4)
$\begin{array}{ccccc} C(21) & 0.4634(6) & 0.2887(3) & 0.6012(4) & 0.044(3) \\ O(21) & 0.3766(5) & 0.2670(2) & 0.5990(3) & 0.071(3) \\ C(22) & 0.5230(7) & 0.4042(3) & 0.6008(5) & 0.06(4) \\ O(23) & 0.4474(5) & 0.3050(3) & 0.4110(3) & 0.093(4) \\ C(23) & 0.4474(5) & 0.3050(3) & 0.4110(3) & 0.093(4) \\ C(31) & 0.6599(4) & 0.2520(2) & 0.8061(3) & 0.067(3) \\ C(32) & 0.9202(6) & 0.2986(3) & 0.9119(4) & 0.047(3) \\ O(32) & 0.9981(5) & 0.2849(2) & 0.9837(3) & 0.071(3) \\ C(32) & 0.9981(5) & 0.2849(2) & 0.9837(3) & 0.071(3) \\ C(33) & 0.7056(6) & 0.4411(2) & 0.8305(4) & 0.093(4) \\ C(41) & 1.0462(6) & 0.1900(3) & 0.8300(4) & 0.055(4) \\ O(41) & 1.0847(6) & 0.1438(3) & 0.8625(4) & 0.098(4) \\ C(42) & 1.1611(6) & 0.2987(3) & 0.8932(4) & 0.052(3) \\ O(51) & 0.7784(6) & 0.2099(3) & 0.5431(4) & 0.043(3) \\ O(51) & 0.7784(6) & 0.2099(3) & 0.5431(4) & 0.043(3) \\ O(51) & 0.7784(6) & 0.2099(3) & 0.5431(4) & 0.043(3) \\ O(51) & 0.7784(6) & 0.3199(3) & 0.5081(4) & 0.043(3) \\ O(51) & 0.7784(6) & 0.3199(3) & 0.5081(4) & 0.043(3) \\ O(51) & 0.7784(6) & 0.3199(3) & 0.5081(4) & 0.043(3) \\ O(52) & 0.8120(6) & 0.3199(3) & 0.5081(4) & 0.043(3) \\ O(52) & 0.8120(6) & 0.3199(3) & 0.5081(4) & 0.033(3) \\ C(11) & 0.9132(5) & 0.3630(2) & 0.7686(4) & 0.033(3) \\ C(11) & 1.0075(5) & 0.4126(2) & 0.8229(3) & 0.031(3) \\ C(111) & 1.0075(5) & 0.4126(2) & 0.8229(3) & 0.031(3) \\ C(112) & 1.0690(6) & 0.4478(3) & 0.7928(4) & 0.033(3) \\ C(113) & 1.1602(7) & 0.4934(3) & 0.5417(5) & 0.072(4) \\ C(114) & 1.1974(7) & 0.5070(3) & 0.9235(5) & 0.066(4) \\ C(115) & 1.1397(7) & 0.4745(3) & 0.9552(5) & 0.066(4) \\ C(116) & 1.0440(6) & 0.4290(3) & 0.9039(4) & 0.033(3) \\ C(112) & 0.6831(5) & 0.1745(2) & 0.6737(4) & 0.033(3) \\ C(122) & 0.8800(6) & 0.1536(3) & 0.5797(4) & 0.033(3) \\ C(123) & 0.5198(6) & 0.0984(3) & 0.5897(7) & 0.0300(6) \\ C(124) & 0.518(7) & 0.0644(3) & 0.5886(5) & 0.066(4) \\ C(125) & 0.6659(8) & 0.0839(3) & 0.7414(5) & 0.063(4) \\ C(126) & 0.7257(6) & 0.1396(3) & 0.7515(4) & 0.034(3) \\ C(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ C(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) $	O(13)	0.9710(6)	0.4769(3)	0.5702(4)	0.098(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)	0.4634(6)	0.2887(3)	0.6012(4)	0.044(3)
$\begin{array}{cccccc} C(22) & 0.5230(7) & 0.4042(3) & 0.6008(5) & 0.061(4) \\ O(22) & 0.4630(6) & 0.4455(2) & 0.5968(5) & 0.106(4) \\ C(23) & 0.5150(7) & 0.3154(3) & 0.4836(4) & 0.059(4) \\ O(23) & 0.4474(5) & 0.3050(3) & 0.4110(3) & 0.093(4) \\ C(31) & 0.6459(6) & 0.2761(3) & 0.8003(4) & 0.043(3) \\ O(31) & 0.5699(4) & 0.2520(2) & 0.8061(3) & 0.067(3) \\ C(32) & 0.9202(6) & 0.2986(3) & 0.9119(4) & 0.047(3) \\ O(32) & 0.9202(6) & 0.2986(3) & 0.9119(4) & 0.047(3) \\ O(33) & 0.7352(7) & 0.3969(3) & 0.8185(5) & 0.056(4) \\ O(33) & 0.7056(6) & 0.4411(2) & 0.8305(4) & 0.093(4) \\ C(41) & 1.0462(6) & 0.1900(3) & 0.8300(4) & 0.055(4) \\ O(41) & 1.0467(6) & 0.1438(3) & 0.8622(4) & 0.098(4) \\ C(42) & 1.1611(6) & 0.2987(3) & 0.8932(4) & 0.052(3) \\ O(42) & 1.2585(5) & 0.3133(3) & 0.9566(3) & 0.091(3) \\ C(51) & 0.7784(6) & 0.2099(3) & 0.5443(4) & 0.043(3) \\ O(52) & 0.8142(5) & 0.3268(2) & 0.491(3) & 0.065(3) \\ C(2) & 0.8102(5) & 0.3649(2) & 0.6773(4) & 0.033(3) \\ C(2) & 0.8112(5) & 0.3663(2) & 0.773(4) & 0.033(3) \\ C(11) & 1.075(5) & 0.4126(2) & 0.8229(3) & 0.031(3) \\ C(112) & 1.0690(6) & 0.4478(3) & 0.7928(4) & 0.055(4) \\ C(113) & 1.1397(7) & 0.4745(3) & 0.9552(5) & 0.069(4) \\ C(113) & 1.1397(7) & 0.4745(3) & 0.9552(5) & 0.069(4) \\ C(114) & 1.1974(7) & 0.5070(3) & 0.9235(5) & 0.069(4) \\ C(115) & 1.1397(7) & 0.4745(3) & 0.9552(5) & 0.069(4) \\ C(114) & 1.1974(7) & 0.5070(3) & 0.9235(5) & 0.066(4) \\ C(115) & 1.1397(7) & 0.4745(3) & 0.9552(5) & 0.069(4) \\ C(115) & 1.1397(7) & 0.4745(3) & 0.9552(5) & 0.066(4) \\ C(116) & 1.0440(6) & 0.4290(3) & 0.939(4) & 0.053(3) \\ C(122) & 0.5800(6) & 0.1536(3) & 0.5979(4) & 0.034(3) \\ C(122) & 0.5800(6) & 0.1536(3) & 0.5979(4) & 0.043(3) \\ C(123) & 0.5188(7) & 0.0684(3) & 0.5689(5) & 0.062(4) \\ C(124) & 0.518(7) & 0.0684(3) & 0.5689(5) & 0.062(4) \\ C(125) & 0.6659(8) & 0.0839(3) & 0.7414(5) & 0.063(4) \\ C(126) & 0.7257(6) & 0.1396(3) & 0.7515(4) & 0.047(3) \\ C(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.035(7) \\ C(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.035(3) \\ C(211) & 0.26(3) \\ C(211) & 0.26395(7) & 0.0$	0(21)	0.3766(5)	0.2670(2)	0.5990(3)	0.071(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	0.5230(7)	0.4042(3)	0.6008(5)	0.061(4)
$\begin{array}{cccccc} C(23) & 0.5150(7) & 0.3154(3) & 0.4836(4) & 0.059(4) \\ O(23) & 0.4474(5) & 0.3059(3) & 0.4110(3) & 0.093(4) \\ C(31) & 0.6459(6) & 0.2761(3) & 0.8003(4) & 0.043(3) \\ O(31) & 0.5699(4) & 0.2520(2) & 0.8061(3) & 0.067(3) \\ C(32) & 0.9202(6) & 0.2986(3) & 0.9119(4) & 0.047(3) \\ O(33) & 0.7352(7) & 0.3969(3) & 0.8185(5) & 0.056(4) \\ O(33) & 0.7352(7) & 0.3969(3) & 0.8185(5) & 0.056(4) \\ O(33) & 0.7056(6) & 0.4411(2) & 0.8305(4) & 0.093(4) \\ C(41) & 1.042(6) & 0.1900(3) & 0.8300(4) & 0.055(4) \\ O(41) & 1.0847(6) & 0.1438(3) & 0.8625(4) & 0.098(4) \\ C(42) & 1.1611(6) & 0.2987(3) & 0.8932(4) & 0.052(3) \\ O(42) & 1.258(5) & 0.3153(3) & 0.956(5) & 0.091(3) \\ C(51) & 0.7784(6) & 0.2099(3) & 0.5443(4) & 0.043(3) \\ O(51) & 0.7435(5) & 0.1682(2) & 0.5016(3) & 0.065(3) \\ C(52) & 0.8120(6) & 0.3199(3) & 0.5081(4) & 0.044(3) \\ O(52) & 0.8120(5) & 0.3630(2) & 0.7686(4) & 0.033(3) \\ C(11) & 0.9132(5) & 0.3630(2) & 0.7686(4) & 0.035(3) \\ C(2) & 0.8301(5) & 0.3649(2) & 0.6773(4) & 0.033(3) \\ C(111) & 1.0075(5) & 0.4126(2) & 0.8229(3) & 0.051(4) \\ C(113) & 1.1602(7) & 0.4934(3) & 0.9523(5) & 0.066(4) \\ C(113) & 1.1602(7) & 0.4934(3) & 0.9523(5) & 0.066(4) \\ C(114) & 1.1974(7) & 0.5070(3) & 0.9235(5) & 0.066(4) \\ C(115) & 1.1397(7) & 0.4745(2) & 0.6777(4) & 0.033(3) \\ C(112) & 0.6831(5) & 0.1745(2) & 0.6797(4) & 0.034(3) \\ C(122) & 0.5800(6) & 0.1399(3) & 0.5979(4) & 0.045(3) \\ C(123) & 0.518(7) & 0.0644(3) & 0.588(5) & 0.066(4) \\ C(124) & 0.5618(7) & 0.0644(3) & 0.588(5) & 0.066(4) \\ C(125) & 0.6659(8) & 0.0839(3) & 0.7515(4) & 0.047(3) \\ C(211) & 1.285(5) & 0.0693(3) & 0.7515(4) & 0.047(3) \\ C(211) & 1.285(5) & 0.0658(7) & 0.0682(4) & 0.033(7) \\ C(211) & 1.285(5) & 0.2014(2) & 0.6892(4) & 0.035(7) \\ C(211) & 1.285(5) & 0.2014(2) & 0.6892(4) & 0.035(7) \\ C(211) & 1.285(5) & 0.2014(2) & 0.6892(4) & 0.036(5) \\ C(211) & 0.363(7) \\ C(211) & 1.285(5) & 0.2014(2) & 0.6892(4) & 0.036(5) \\ C(211) & 0.335(7) \\ C(211) & 0.365(1) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ C(211) & 0.365(7) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ C(211) & 0.$	0(22)	0.4630(6)	0.4455(2)	0.5968(5)	0.106(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	0.5150(7)	0.3154(3)	0.4836(4)	0.059(4)
$\begin{array}{cccccc} C(31) & 0.6459(6) & 0.2761(3) & 0.8003(4) & 0.043(3) \\ O(31) & 0.5699(4) & 0.2520(2) & 0.8061(3) & 0.067(3) \\ C(32) & 0.9981(5) & 0.2849(2) & 0.9837(3) & 0.071(3) \\ C(33) & 0.7352(7) & 0.3969(3) & 0.8185(5) & 0.056(4) \\ O(33) & 0.7056(6) & 0.4411(2) & 0.8305(4) & 0.093(4) \\ C(41) & 1.0462(6) & 0.1900(3) & 0.8300(4) & 0.055(4) \\ O(41) & 1.0847(6) & 0.1438(3) & 0.8625(4) & 0.098(4) \\ C(42) & 1.1611(6) & 0.2987(3) & 0.8832(4) & 0.052(3) \\ O(42) & 1.2585(5) & 0.3153(3) & 0.9566(3) & 0.091(3) \\ C(51) & 0.7784(6) & 0.2099(3) & 0.5443(4) & 0.043(3) \\ O(51) & 0.7784(6) & 0.2099(3) & 0.5443(4) & 0.043(3) \\ O(52) & 0.8120(6) & 0.3199(3) & 0.5081(4) & 0.044(3) \\ O(52) & 0.8120(6) & 0.3199(3) & 0.5081(4) & 0.044(3) \\ O(52) & 0.8120(6) & 0.3630(2) & 0.7784(4) & 0.033(3) \\ C(11) & 0.9132(5) & 0.3630(2) & 0.7784(4) & 0.033(3) \\ C(11) & 0.9132(5) & 0.3630(2) & 0.7784(4) & 0.033(3) \\ C(11) & 0.9132(5) & 0.3630(2) & 0.7784(4) & 0.033(3) \\ C(111) & 1.0075(5) & 0.4126(2) & 0.8229(3) & 0.031(3) \\ C(112) & 1.0690(6) & 0.4478(3) & 0.7928(4) & 0.055(4) \\ C(113) & 1.1602(7) & 0.4934(3) & 0.8417(5) & 0.072(4) \\ C(114) & 1.1974(7) & 0.5070(3) & 0.9235(5) & 0.066(4) \\ C(115) & 1.1397(7) & 0.4745(3) & 0.9552(5) & 0.066(4) \\ C(116) & 1.0440(6) & 0.4290(3) & 0.9339(4) & 0.053(3) \\ P(1) & 0.7560(1) & 0.24918(6) & 0.69372(9) & 0.3300(6) \\ C(122) & 0.881(5) & 0.1745(2) & 0.6797(4) & 0.034(3) \\ C(122) & 0.580(6) & 0.1536(3) & 0.5979(4) & 0.034(3) \\ C(122) & 0.518(6) & 0.0839(3) & 0.7844(5) & 0.065(4) \\ C(124) & 0.5618(7) & 0.0684(3) & 0.589(5) & 0.066(4) \\ C(125) & 0.6659(8) & 0.0839(3) & 0.7515(4) & 0.043(3) \\ C(126) & 0.7257(6) & 0.1396(3) & 0.7515(4) & 0.047(3) \\ C(211) & 1.285(5) & 0.2014(2) & 0.6892(4) & 0.033(3) \\ C(211) & 1.285(5) & 0.2014(2) & 0.6892(4) & 0.033(3) \\ C(211) & 1.285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ C(211) & 0.325(7) \\ C(211) & 1.285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ C(212) & 0.5380(1) & 0.26955(7) & 0.6892(4) & 0.036(3) \\ C(211) & 0.755(1) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ C(212) & 0.538(1) & 0.$	0(23)	0.4474(5)	0.3050(3)	0.4110(3)	0.093(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	0.6459(6)	0.2761(3)	0.8003(4)	0.043(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\dot{\mathbf{O}}$	0.5699(4)	0.2520(2)	0.8061(3)	0.067(3)
$\begin{array}{cccccc} (32) & 0.9981(5) & 0.2849(2) & 0.9837(3) & 0.071(3) \\ (233) & 0.7352(7) & 0.3969(3) & 0.8185(5) & 0.056(4) \\ (0(33) & 0.7056(6) & 0.4411(2) & 0.8305(4) & 0.093(4) \\ (2(41) & 1.0462(6) & 0.1900(3) & 0.8300(4) & 0.055(4) \\ (0(41) & 1.0847(6) & 0.1438(3) & 0.8625(4) & 0.098(4) \\ (2(42) & 1.1611(6) & 0.2987(3) & 0.8932(4) & 0.052(3) \\ (2(42) & 1.2585(5) & 0.3153(3) & 0.9566(3) & 0.091(3) \\ (2(51) & 0.7784(6) & 0.2099(3) & 0.5443(4) & 0.043(3) \\ (2(51) & 0.7784(6) & 0.2099(3) & 0.5081(4) & 0.043(3) \\ (2(52) & 0.8120(6) & 0.3199(2) & 0.5081(4) & 0.043(3) \\ (2(52) & 0.8120(6) & 0.3199(3) & 0.5081(4) & 0.043(3) \\ (2(52) & 0.8120(6) & 0.3199(2) & 0.7686(4) & 0.035(3) \\ (2(2) & 0.8301(5) & 0.3649(2) & 0.6773(4) & 0.033(3) \\ (2(11) & 0.9132(5) & 0.3630(2) & 0.7686(4) & 0.035(3) \\ (2(11) & 0.9132(5) & 0.3649(2) & 0.6773(4) & 0.033(3) \\ (2(112) & 1.0690(6) & 0.4478(3) & 0.7928(4) & 0.055(4) \\ (2(113) & 1.1602(7) & 0.4934(3) & 0.8417(5) & 0.072(4) \\ (2(114) & 1.197(7) & 0.5070(3) & 0.9235(5) & 0.066(4) \\ (2(115) & 1.1397(7) & 0.4745(3) & 0.9552(5) & 0.066(4) \\ (2(116) & 1.0440(6) & 0.4290(3) & 0.9039(4) & 0.053(3) \\ (2(121) & 0.6831(5) & 0.1745(2) & 0.6797(4) & 0.034(3) \\ (2(122) & 0.5800(6) & 0.1536(3) & 0.5979(4) & 0.045(3) \\ (2(123) & 0.5198(6) & 0.0984(3) & 0.5869(5) & 0.062(4) \\ (2(124) & 0.5618(7) & 0.0644(3) & 0.5869(5) & 0.066(4) \\ (2(125) & 0.6659(8) & 0.0839(3) & 0.7414(5) & 0.063(4) \\ (2(124) & 0.5618(7) & 0.0644(3) & 0.5869(5) & 0.066(4) \\ (2(125) & 0.6659(8) & 0.0839(3) & 0.7515(4) & 0.045(3) \\ (2(124) & 0.5518(1) & 0.26955(7) & 0.6984(1) & 0.0335(7) \\ (2(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ (2(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ (2(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ (2(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ (2(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ (2(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ (2(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ (2(211) & 0.35(7) \\ (2(211) & 1.285(5) & 0.2014(2) & 0.68$	C(32)	0.9202(6)	0.2986(3)	0.9119(4)	0.047(3)
C(33) $0.7352(7)$ $0.3969(3)$ $0.8185(5)$ $0.056(4)$ $O(33)$ $0.7056(6)$ $0.4411(2)$ $0.8305(4)$ $0.093(4)$ $C(41)$ $1.0462(6)$ $0.1900(3)$ $0.8300(4)$ $0.055(4)$ $O(41)$ $1.0847(6)$ $0.1438(3)$ $0.8622(4)$ $0.098(4)$ $C(42)$ $1.1611(6)$ $0.2987(3)$ $0.8932(4)$ $0.052(3)$ $O(42)$ $1.2585(5)$ $0.3153(3)$ $0.9566(3)$ $0.091(3)$ $C(51)$ $0.7784(6)$ $0.2099(3)$ $0.5443(4)$ $0.043(3)$ $O(51)$ $0.7435(5)$ $0.1682(2)$ $0.5016(3)$ $0.065(3)$ $C(52)$ $0.8120(6)$ $0.3199(3)$ $0.5081(4)$ $0.044(3)$ $O(52)$ $0.8142(5)$ $0.3268(2)$ $0.4491(3)$ $0.062(3)$ $C(11)$ $0.9132(5)$ $0.3630(2)$ $0.7686(4)$ $0.033(3)$ $C(11)$ $0.9132(5)$ $0.3630(2)$ $0.7686(4)$ $0.033(3)$ $C(111)$ $1.0075(5)$ $0.4126(2)$ $0.8229(3)$ $0.031(3)$ $C(112)$ $1.0690(6)$ $0.4478(3)$ $0.7928(4)$ $0.055(4)$ $C(113)$ $1.1602(7)$ $0.4934(3)$ $0.8417(5)$ $0.072(4)$ $C(114)$ $1.1974(7)$ $0.5070(3)$ $0.9235(5)$ $0.066(4)$ $C(115)$ $1.397(7)$ $0.4745(3)$ $0.9532(5)$ $0.066(4)$ $C(114)$ $1.0974(7)$ $0.0794(3)$ $0.939(4)$ $0.053(3)$ $P(1)$ $0.7560(1)$ $0.24918(6)$ $0.69372(9)$ $0.300(6)$ $C(121)$ $0.6811(5)$ $0.1745(2)$	O(32)	0.9981(5)	0.2849(2)	0.9837(3)	0.071(3)
C(1)C(1)C(1)C(1)C(1)C(41)1.0462(6)0.1900(3)0.8305(4)0.093(4)C(41)1.0847(6)0.1438(3)0.8625(4)0.098(4)C(42)1.1611(6)0.2987(3)0.8932(4)0.052(3)O(42)1.2585(5)0.3153(3)0.9566(3)0.091(3)C(51)0.7784(6)0.2099(3)0.5443(4)0.043(3)O(51)0.7435(5)0.1682(2)0.5016(3)0.065(3)C(52)0.8120(6)0.3199(3)0.5081(4)0.044(3)O(52)0.8142(5)0.3268(2)0.4491(3)0.062(3)C(1)0.9132(5)0.3630(2)0.7686(4)0.033(3)C(11)0.9132(5)0.3649(2)0.6773(4)0.033(3)C(111)1.0075(5)0.4126(2)0.8229(3)0.031(3)C(112)1.6690(6)0.4478(3)0.7928(4)0.055(4)C(113)1.1602(7)0.4934(3)0.8417(5)0.072(4)C(114)1.1974(7)0.5070(3)0.9235(5)0.066(4)C(115)1.1397(7)0.4745(3)0.9552(5)0.066(4)C(116)1.0440(6)0.4290(3)0.9039(4)0.053(3)P(1)0.7560(1)0.24918(6)0.659372(9)0.300(6)C(121)0.6831(5)0.1745(2)0.6797(4)0.034(3)C(122)0.5800(6)0.1536(3)0.5979(4)0.045(3)C(123)0.5198(6)0.0984(3)0.5869(5)0.062(4)C(124)0.518(7)0.6644(3)0.6585(5)<	C(33)	0.7352(7)	0.3969(3)	0.8185(5)	0.056(4)
C(41) $1.0462(6)$ $0.190(3)$ $0.8300(4)$ $0.055(4)$ $O(41)$ $1.0847(6)$ $0.1438(3)$ $0.8300(4)$ $0.055(4)$ $O(41)$ $1.0847(6)$ $0.1438(3)$ $0.830(4)$ $0.052(3)$ $O(42)$ $1.2585(5)$ $0.3153(3)$ $0.9566(3)$ $0.091(3)$ $C(51)$ $0.7784(6)$ $0.2099(3)$ $0.5443(4)$ $0.043(3)$ $O(51)$ $0.7435(5)$ $0.1682(2)$ $0.501(3)$ $0.065(3)$ $C(52)$ $0.8120(6)$ $0.3199(3)$ $0.5081(4)$ $0.044(3)$ $O(52)$ $0.8142(5)$ $0.3268(2)$ $0.4491(3)$ $0.062(3)$ $C(1)$ $0.9132(5)$ $0.3649(2)$ $0.6773(4)$ $0.033(3)$ $C(2)$ $0.8301(5)$ $0.3649(2)$ $0.6773(4)$ $0.033(3)$ $C(111)$ $1.0075(5)$ $0.4126(2)$ $0.8229(3)$ $0.031(3)$ $C(112)$ $1.6690(6)$ $0.4478(3)$ $0.7928(4)$ $0.055(4)$ $C(113)$ $1.1602(7)$ $0.4934(3)$ $0.8417(5)$ $0.072(4)$ $C(114)$ $1.1974(7)$ $0.5070(3)$ $0.9235(5)$ $0.066(4)$ $C(115)$ $1.1397(7)$ $0.4745(3)$ $0.9339(4)$ $0.053(3)$ $P(1)$ $0.7560(1)$ $0.24918(6)$ $0.69372(9)$ $0.0300(6)$ $C(122)$ $0.5800(6)$ $0.1536(3)$ $0.5979(4)$ $0.045(3)$ $C(123)$ $0.518(7)$ $0.0684(3)$ $0.5869(5)$ $0.066(4)$ $C(124)$ $0.5618(7)$ $0.063(3)$ $0.7515(4)$ $0.047(3)$ $P(2)$ $1.0558(1)$ $0.26955(7)$ <td>0(33)</td> <td>0.7056(6)</td> <td>0.4411(2)</td> <td>0.8305(4)</td> <td>0.093(4)</td>	0(33)	0.7056(6)	0.4411(2)	0.8305(4)	0.093(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(41)	1 0462(6)	0.1900(3)	0.8300(4)	0.055(4)
C(42)1.1611(6)0.2987(3)0.8932(4)0.052(3) $O(42)$ 1.2585(5)0.3153(3)0.9566(3)0.091(3)C(51)0.7784(6)0.2099(3)0.5443(4)0.043(3) $O(51)$ 0.7435(5)0.1682(2)0.5016(3)0.065(3)C(52)0.8120(6)0.3199(3)0.5081(4)0.044(3) $O(52)$ 0.8142(5)0.3268(2)0.4491(3)0.062(3)C(1)0.9132(5)0.3630(2)0.7686(4)0.035(3)C(2)0.8301(5)0.3649(2)0.6773(4)0.033(3)C(111)1.0075(5)0.4126(2)0.8229(3)0.031(3)C(112)1.0690(6)0.4478(3)0.7928(4)0.055(4)C(113)1.1602(7)0.4934(3)0.8417(5)0.072(4)C(114)1.1974(7)0.5070(3)0.9235(5)0.066(4)C(115)1.1397(7)0.4745(3)0.9552(5)0.066(4)C(116)1.0440(6)0.4290(3)0.9039(4)0.053(3)P(1)0.7560(1)0.24918(6)0.69372(9)0.0300(6)C(121)0.6831(5)0.1745(2)0.6797(4)0.034(3)C(122)0.5800(6)0.1536(3)0.5979(4)0.045(3)C(123)0.5198(6)0.0939(3)0.7414(5)0.066(4)C(124)0.5618(7)0.0644(3)0.6585(5)0.066(4)C(124)0.5618(7)0.0643(3)0.7515(4)0.063(4)C(124)0.5518(1)0.26955(7)0.6884(1)0.0335(7)C(211)1.1285(5)0.	0(41)	1.0847(6)	0.1438(3)	0.8625(4)	0.098(4)
O(42)1.258(5)0.3153(3)0.9566(3)0.091(3) $O(42)$ 1.258(5)0.3153(3)0.9566(3)0.091(3) $O(51)$ 0.7784(6)0.2099(3)0.5443(4)0.043(3) $O(51)$ 0.7435(5)0.1682(2)0.5016(3)0.065(3) $O(52)$ 0.8120(6)0.3199(3)0.5081(4)0.044(3) $O(52)$ 0.8142(5)0.3268(2)0.4491(3)0.062(3) $O(52)$ 0.8142(5)0.3630(2)0.7686(4)0.035(3) $C(1)$ 0.9132(5)0.3649(2)0.6773(4)0.033(3) $C(2)$ 0.8301(5)0.4126(2)0.8229(3)0.031(3) $C(112)$ 1.0690(6)0.4478(3)0.7928(4)0.055(4) $C(113)$ 1.1602(7)0.4934(3)0.8417(5)0.072(4) $C(114)$ 1.1974(7)0.5070(3)0.9235(5)0.0669(4) $C(115)$ 1.1397(7)0.4745(3)0.9552(5)0.066(4) $C(116)$ 1.0440(6)0.4290(3)0.9039(4)0.053(3) $P(1)$ 0.7560(1)0.24918(6)0.69372(9)0.0300(6) $C(121)$ 0.6831(5)0.1745(2)0.6797(4)0.034(3) $C(122)$ 0.5800(6)0.1536(3)0.5979(4)0.045(3) $C(123)$ 0.5198(6)0.0989(3)0.5869(5)0.066(4) $C(124)$ 0.5618(7)0.0644(3)0.6585(5)0.066(4) $C(125)$ 0.6659(8)0.0839(3)0.7515(4)0.047(3) $P(2)$ 1.0558(1)0.26955(7)0.6892(4)0.036(3) <td>C(42)</td> <td>1.1611(6)</td> <td>0.2987(3)</td> <td>0.8932(4)</td> <td>0.052(3)</td>	C(42)	1.1611(6)	0.2987(3)	0.8932(4)	0.052(3)
C(5) $1.250(5)$ $0.1010(5)$ $0.050(5)$ $0.0010(5)$ $C(51)$ $0.7784(6)$ $0.2099(3)$ $0.5443(4)$ $0.043(3)$ $O(51)$ $0.7435(5)$ $0.1682(2)$ $0.5016(3)$ $0.065(3)$ $C(52)$ $0.8120(6)$ $0.3199(3)$ $0.5081(4)$ $0.044(3)$ $O(52)$ $0.8142(5)$ $0.3268(2)$ $0.4491(3)$ $0.062(3)$ $C(1)$ $0.9132(5)$ $0.3630(2)$ $0.7686(4)$ $0.033(3)$ $C(2)$ $0.8301(5)$ $0.3649(2)$ $0.6773(4)$ $0.033(3)$ $C(11)$ $1.0075(5)$ $0.4126(2)$ $0.8229(3)$ $0.031(3)$ $C(112)$ $1.0690(6)$ $0.4478(3)$ $0.7928(4)$ $0.055(4)$ $C(113)$ $1.1602(7)$ $0.4934(3)$ $0.8417(5)$ $0.072(4)$ $C(114)$ $1.1974(7)$ $0.5070(3)$ $0.9235(5)$ $0.066(4)$ $C(115)$ $1.1397(7)$ $0.4745(3)$ $0.9552(5)$ $0.066(4)$ $C(116)$ $1.0440(6)$ $0.4290(3)$ $0.9039(4)$ $0.053(3)$ $P(1)$ $0.7560(1)$ $0.24918(6)$ $0.69372(9)$ $0.0300(6)$ $C(121)$ $0.6831(5)$ $0.1745(2)$ $0.6797(4)$ $0.034(3)$ $C(122)$ $0.5800(6)$ $0.1536(3)$ $0.5979(4)$ $0.045(3)$ $C(123)$ $0.5198(6)$ $0.0839(3)$ $0.7814(5)$ $0.066(4)$ $C(124)$ $0.5518(7)$ $0.6685(5)$ $0.066(4)$ $C(125)$ $0.6659(8)$ $0.0839(3)$ $0.7515(4)$ $0.047(3)$ $P(2)$ $1.0558(1)$ $0.22014(2)$ $0.6892(4$	0(42)	1 2585(5)	0.3153(3)	0.9566(3)	0.091(3)
O(51) $O.7435(5)$ $O.1682(2)$ $O.5016(3)$ $O.065(3)$ $O(51)$ $0.7435(5)$ $0.1682(2)$ $0.5016(3)$ $0.065(3)$ $O(52)$ $0.8120(6)$ $0.3199(3)$ $0.5081(4)$ $0.044(3)$ $O(52)$ $0.8142(5)$ $0.3268(2)$ $0.4491(3)$ $0.062(3)$ $C(1)$ $0.9132(5)$ $0.3630(2)$ $0.7686(4)$ $0.033(3)$ $C(2)$ $0.8301(5)$ $0.3649(2)$ $0.6773(4)$ $0.033(3)$ $C(111)$ $1.0075(5)$ $0.4126(2)$ $0.8229(3)$ $0.031(3)$ $C(112)$ $1.0690(6)$ $0.4478(3)$ $0.7928(4)$ $0.055(4)$ $C(113)$ $1.1602(7)$ $0.4934(3)$ $0.8417(5)$ $0.072(4)$ $C(114)$ $1.1974(7)$ $0.5070(3)$ $0.9235(5)$ $0.066(4)$ $C(115)$ $1.1397(7)$ $0.4745(3)$ $0.9552(5)$ $0.066(4)$ $C(116)$ $1.0440(6)$ $0.4290(3)$ $0.9039(4)$ $0.053(3)$ $P(1)$ $0.7560(1)$ $0.24918(6)$ $0.69372(9)$ $0.300(6)$ $C(121)$ $0.6831(5)$ $0.1745(2)$ $0.6797(4)$ $0.034(3)$ $C(122)$ $0.5800(6)$ $0.1536(3)$ $0.5979(4)$ $0.045(3)$ $C(123)$ $0.5198(6)$ $0.0934(3)$ $0.5869(5)$ $0.062(4)$ $C(124)$ $0.5618(7)$ $0.0644(3)$ $0.6585(5)$ $0.066(4)$ $C(125)$ $0.6659(8)$ $0.0839(3)$ $0.7414(5)$ $0.063(4)$ $C(126)$ $0.7257(6)$ $0.1396(3)$ $0.7515(4)$ $0.047(3)$ $P(2)$ $1.0558(1)$ 0.2014	C(51)	0.7784(6)	0.2099(3)	0.5443(4)	0.043(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0(51)	0.7435(5)	0.1682(2)	0.5016(3)	0.065(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(52)	0.8120(6)	0.3199(3)	0 5081(4)	0.044(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(52)	0.8142(5)	0.3268(2)	0 4491(3)	0.062(3)
C(2) $0.8301(5)$ $0.3649(2)$ $0.6773(4)$ $0.033(3)$ $C(111)$ $1.0075(5)$ $0.4126(2)$ $0.8229(3)$ $0.031(3)$ $C(112)$ $1.0690(6)$ $0.4478(3)$ $0.7928(4)$ $0.055(4)$ $C(113)$ $1.1602(7)$ $0.4934(3)$ $0.8417(5)$ $0.072(4)$ $C(114)$ $1.1974(7)$ $0.5070(3)$ $0.9235(5)$ $0.066(4)$ $C(115)$ $1.1397(7)$ $0.4745(3)$ $0.9552(5)$ $0.066(4)$ $C(116)$ $1.0440(6)$ $0.4290(3)$ $0.9039(4)$ $0.053(3)$ $P(1)$ $0.7560(1)$ $0.24918(6)$ $0.69372(9)$ $0.0300(6)$ $C(121)$ $0.6831(5)$ $0.1745(2)$ $0.6797(4)$ $0.034(3)$ $C(122)$ $0.5800(6)$ $0.1536(3)$ $0.5979(4)$ $0.045(3)$ $C(123)$ $0.5198(6)$ $0.0984(3)$ $0.5869(5)$ $0.062(4)$ $C(124)$ $0.5618(7)$ $0.0644(3)$ $0.6585(5)$ $0.066(4)$ $C(125)$ $0.6659(8)$ $0.0839(3)$ $0.7414(5)$ $0.063(4)$ $C(126)$ $0.7257(6)$ $0.1396(3)$ $0.7515(4)$ $0.047(3)$ $P(2)$ $1.0558(1)$ $0.26955(7)$ $0.6892(4)$ $0.036(3)$	C(1)	0.9132(5)	0.3630(2)	0.7686(4)	0.035(3)
C(1) $C(10)$ $C(10)$ $C(10)$ $C(10)$ $C(10)$ $C(111)$ $1.0075(5)$ $0.4126(2)$ $0.8229(3)$ $0.031(3)$ $C(112)$ $1.0690(6)$ $0.4478(3)$ $0.7928(4)$ $0.055(4)$ $C(113)$ $1.1602(7)$ $0.4934(3)$ $0.8417(5)$ $0.072(4)$ $C(114)$ $1.1974(7)$ $0.5070(3)$ $0.9235(5)$ $0.066(4)$ $C(115)$ $1.1397(7)$ $0.4745(3)$ $0.9552(5)$ $0.066(4)$ $C(116)$ $1.0440(6)$ $0.4290(3)$ $0.9039(4)$ $0.053(3)$ $P(1)$ $0.7560(1)$ $0.24918(6)$ $0.69372(9)$ $0.0300(6)$ $C(121)$ $0.6831(5)$ $0.1745(2)$ $0.6797(4)$ $0.034(3)$ $C(122)$ $0.5800(6)$ $0.1536(3)$ $0.5979(4)$ $0.045(3)$ $C(123)$ $0.5198(6)$ $0.0984(3)$ $0.5869(5)$ $0.062(4)$ $C(124)$ $0.5618(7)$ $0.0644(3)$ $0.6585(5)$ $0.066(4)$ $C(125)$ $0.6659(8)$ $0.0839(3)$ $0.7414(5)$ $0.063(4)$ $C(126)$ $0.7257(6)$ $0.1396(3)$ $0.7515(4)$ $0.047(3)$ $P(2)$ $1.0558(1)$ $0.26955(7)$ $0.6892(4)$ $0.036(3)$	C(2)	0.8301(5)	0.3649(2)	0 6773(4)	0.033(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	1.0075(5)	0.4126(2)	0.8229(3)	0.031(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(112)	1.0690(6)	0.4478(3)	0.3229(3) 0.7928(4)	0.055(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(113)	1 1602(7)	0 4934(3)	0.8417(5)	0.072(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(114)	1 1974(7)	0.5070(3)	0.9735(5)	0.069(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(115)	1 1 397(7)	0.4745(3)	0.9552(5)	0.066(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(116)	1.0440(6)	0.4790(3)	0.9039(4)	0.053(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)	0.7560(1)	0.74918(6)	0.5035(4)	0.0300(6)
$\begin{array}{ccccc} C(122) & 0.5800(6) & 0.1536(3) & 0.5979(4) & 0.045(3) \\ C(123) & 0.5198(6) & 0.0984(3) & 0.5869(5) & 0.062(4) \\ C(124) & 0.5618(7) & 0.0644(3) & 0.6585(5) & 0.066(4) \\ C(125) & 0.6659(8) & 0.0839(3) & 0.7414(5) & 0.063(4) \\ C(126) & 0.7257(6) & 0.1396(3) & 0.7515(4) & 0.047(3) \\ P(2) & 1.0558(1) & 0.26955(7) & 0.6984(1) & 0.0335(7) \\ C(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ \end{array}$	C(121)	0.6831(5)	0.1745(2)	0.6797(4)	0.034(3)
C(123) $0.5360(6)$ $0.195(5)$ $0.597(4)$ $0.656(5)$ $C(123)$ $0.5198(6)$ $0.0984(3)$ $0.5869(5)$ $0.062(4)$ $C(124)$ $0.5618(7)$ $0.0644(3)$ $0.6585(5)$ $0.066(4)$ $C(125)$ $0.6659(8)$ $0.0839(3)$ $0.7414(5)$ $0.063(4)$ $C(126)$ $0.7257(6)$ $0.1396(3)$ $0.7515(4)$ $0.047(3)$ $P(2)$ $1.0558(1)$ $0.26955(7)$ $0.6892(4)$ $0.0335(7)$ $C(211)$ $1.1285(5)$ $0.2014(2)$ $0.6892(4)$ $0.036(3)$	C(122)	0.5800(6)	0.1536(3)	0.5979(4)	0.045(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(123)	0.5198(6)	0.0984(3)	0.5279(4)	0.043(3)
$\begin{array}{ccccccc} C(125) & 0.6659(8) & 0.0839(3) & 0.7414(5) & 0.063(4) \\ C(126) & 0.7257(6) & 0.1396(3) & 0.7515(4) & 0.047(3) \\ P(2) & 1.0558(1) & 0.26955(7) & 0.6984(1) & 0.0335(7) \\ C(211) & 1.1285(5) & 0.2014(2) & 0.6892(4) & 0.036(3) \\ \end{array}$	C(124)	0.5618(7)	0.0644(3)	0.6585(5)	0.066(4)
C(12c) $C(12c)$ $C(12c)$ $C(12c)$ $C(12c)$ $C(12c)$ $C(12c)$ $C(126)$ $0.7257(6)$ $0.1396(3)$ $0.7515(4)$ $0.047(3)$ $P(2)$ $1.0558(1)$ $0.26955(7)$ $0.6984(1)$ $0.0335(7)$ $C(211)$ $1.1285(5)$ $0.2014(2)$ $0.6892(4)$ $0.036(3)$	C(125)	0.6659(8)	0.0839(3)	0.7414(5)	0.063(4)
P(2) $1.0558(1)$ $0.26955(7)$ $0.6984(1)$ $0.0335(7)$ $C(211)$ $1.1285(5)$ $0.2014(2)$ $0.6892(4)$ $0.036(3)$	C(126)	0.7257(6)	0.1396(3)	0.7515(4)	0.047(3)
C(211) $1.1285(5)$ $0.2014(2)$ $0.6892(4)$ $0.036(3)$	P(2)	1.0558(1)	0.26955(7)	0.6984(1)	0.0335(7)
	C(211)	1.1285(5)	0.2014(2)	0.6892(4)	0.036(3)
C(212) 1.2439(6) 0.2025(3) 0.6911(4) 0.044(3)	C(212)	1.2439(6)	0.2025(3)	0.6911(4)	0.044(3)

Non-hydrogen atomic coordinates and isotropic displacement parameters for $Ru_5(\mu_5-C_2Ph)(\mu_4-PPh)(\mu-PPh_2)(CO)_{13}$ (5)

Atom	x	У	Z	$U_{\rm eq}$ (Å ²)
C(215)	1.1238(7)	0.0932(3)	0.6739(5)	0.062(4)
C(216)	1.0696(6)	0.1453(3)	0.6809(4)	0.051(3)
C(221)	1.1723(6)	0.3272(3)	0.7077(4)	0.044(3)
C(222)	1.1499(7)	0.3516(4)	0.6337(5)	0.071(4)
C(223)	1.2424(8)	0.3932(4)	0.6415(6)	0.091(6)
C(224)	1.3520(8)	0.4111(3)	0.7195(6)	0.082(5)
C(225)	1.377(1)	0.3866(5)	0.7939(7)	0.112(7)
C(226)	1.2865(8)	0.3451(4)	0.7886(5)	0.076(5)

Table 2 (continued)

 $I > 3\sigma(I)$ being considered 'observed' and used in the full-matrix least-squares refinement after gaussian absorption correction. Anisotropic thermal parameters were refined for the non-hydrogen atoms; $(x, y, z, U_{iso})_{H}$ were included constrained at estimated values. Conventional residuals R, R' on |F| were 0.035, 0.041, respectively, statistical weights derivative of $\sigma^{2}(I) = \sigma^{2}(I_{diff}) + 0.0004\sigma^{4}(I_{diff})$ being used. Computation used the XTAL 3.0 program system [9] implemented by S.R. Hall; neutral atom complex scattering factors were employed. Pertinent results are given in Fig. 1 and Tables 1 and 2. Structure factor amplitudes, thermal and hydrogen atom parameters and full non-hydrogen geometries are available from the authors.

Crystal data

Ru₅(μ_5 -C₂Ph)(μ_4 -PPh)(μ -PPh₂)(CO)₁₃ \equiv C₃₉H₂₀O₁₃P₂Ru₅, M = 1263.9. Monoclinic, space group $P2_1/c$ (No. 14), a = 12.113(3), b = 22.198(5), c = 19.007(6) Å, $\beta = 126.54(2)^{\circ}$, U = 4106.2 Å³. D_c (Z = 4) = 2.04 g cm⁻³. F(000) = 2432. $\mu_{Mo} = 17.5$ cm⁻¹. Specimen: $0.40 \times 0.06 \times 0.52$ mm; $A^*_{min.max} = 1.12, 2.07$.

Acknowledgements

We thank the Australian Research Council for support of this work and Johnson Matthey Technology Centre for a generous loan of $RuCl_3 \cdot nH_2O$.

References

- 1 Part LXX: M.I. Bruce, P.A. Humphrey, H. Miyamae and A.H. White, J. Organomet. Chem., 417 (1991) 431.
- 2 M.I. Bruce, M.J. Liddell, B.W. Skelton and A.H. White, Organometallics, in press.
- 3 A.J. Carty, Pure Appl. Chem., 54 (1982) 13.
- 4 J.-C. Daran, Y. Jeannin and O. Christiansson, Organometallics, 4 (1985) 1882.
- 5 M.I. Bruce, M.J. Liddell and E.R.T. Tiekink, J. Organomet. Chem., 391 (1990) 81.
- 6 K. Natarajan, L. Zsolnai and G. Huttner, J. Organomet. Chem., 209 (1981) 85.
- 7 (a) R.D. Adams and J.T. Tanner, Organometallics, 7 (1988) 2241; (b) A.J. Deeming, S.E. Kabir, D. Nuel and N.I. Powell, ibid., 8 (1989) 717.
- 8 Z. Nomikou, J.-F. Halet, R. Hoffmann, J.T. Tanner and R.D. Adams, Organometallics, 9 (1990) 588.
- 9 S.R. Hall and J.M. Stewart (Eds.), XTAL Users' Manual, Version 3.0, Universities of Western Australia and Maryland, 1990.